21 research outputs found

    An Autonomous Channel Selection Algorithm for WLANs

    Get PDF
    IEEE 802.11 wireless devices need to select a channel in order to transmit their packets. However, as a result of the contention-based nature of the IEEE 802.11 CSMA/CA MAC mechanism, the capacity experienced by a station is not fixed. When a station cannot win a sufficient number of transmission opportunities to satisfy its traffic load, it will become saturated. If the saturation condition persists, more and more packets are stored in the transmit queue and congestion occurs. Congestion leads to high packet delay and may ultimately result in catastrophic packet loss when the transmit queue’s capacity is exceeded. In this thesis, we propose an autonomous channel selection algorithm with neighbour forcing (NF) to minimize the incidence of congestion on all stations using the channels. All stations reassign the channels based on the local monitoring information. This station will change the channel once it finds a channel that has sufficient available bandwidth to satisfy its traffic load requirement or it will force its neighbour stations into saturation by reducing its PHY transmission rate if there exists at least one successful channel assignment according to a predicting module which checks all the possible channel assignments. The results from a simple C++ simulator show that the NF algorithm has a higher probability than the dynamic channel assignment without neighbour forcing (NONF) to successfully reassign the channel once stations have become congested. In an experimental testbed, the Madwifi open source wireless driver has been modified to incorporate the channel selection mechanism. The results demonstrate that the NF algorithm also has a better performance than the NONF algorithm in reducing the congestion time of the network where at least one station has become congested

    Data Service Outsourcing and Privacy Protection in Mobile Internet

    Get PDF
    Mobile Internet data have the characteristics of large scale, variety of patterns, and complex association. On the one hand, it needs efficient data processing model to provide support for data services, and on the other hand, it needs certain computing resources to provide data security services. Due to the limited resources of mobile terminals, it is impossible to complete large-scale data computation and storage. However, outsourcing to third parties may cause some risks in user privacy protection. This monography focuses on key technologies of data service outsourcing and privacy protection, including the existing methods of data analysis and processing, the fine-grained data access control through effective user privacy protection mechanism, and the data sharing in the mobile Internet

    Leveraging Image Visual Features in Content-Based Recommender System

    No full text
    Content-based (CB) and collaborative filtering (CF) recommendation algorithms are widely used in modern e-commerce recommender systems (RSs) to improve user experience of personalized services. Item content features and user-item rating data are primarily used to train the recommendation model. However, sparse data would lead such systems unreliable. To solve the data sparsity problem, we consider that more latent information would be imported to catch users’ potential preferences. Therefore, hybrid features which include all kinds of item features are used to excavate users’ interests. In particular, we find that the image visual features can catch more potential preferences of users. In this paper, we leverage the combination of user-item rating data and item hybrid features to propose a novel CB recommendation model, which is suitable for rating-based recommender scenarios. The experimental results show that the proposed model has better recommendation performance in sparse data scenarios than conventional approaches. Besides, training offline and recommendation online make the model has higher efficiency on large datasets

    Determination of the number of ψ(3686)\psi(3686) events at BESIII

    No full text
    The numbers of ψ(3686) events accumulated by the BESIII detector for the data taken during 2009 and 2012 are determined to be and , respectively, by counting inclusive hadronic events, where the uncertainties are systematic and the statistical uncertainties are negligible. The number of events for the sample taken in 2009 is consistent with that of the previous measurement. The total number of ψ(3686) events for the two data taking periods is
    corecore